Network Analysis via Partial Spectral Factorization and Gauss Quadrature

نویسندگان

  • Caterina Fenu
  • David R. Martin
  • Lothar Reichel
  • Giuseppe Rodriguez
چکیده

Large-scale networks arise in many applications. It is often of interest to be able to identify the most important nodes of a network or to ascertain the ease of traveling between nodes. These and related quantities can be determined by evaluating expressions of the form uT f(A)w, where A is the adjacency matrix that represents the graph of the network, f is a nonlinear function, such as the exponential function, and u and w are vectors, for instance, axis vectors. This paper describes a novel technique for determining upper and lower bounds for expressions uT f(A)w when A is symmetric and bounds for many vectors u and w are desired. The bounds are computed by first evaluating a low-rank approximation of A, which is used to determine rough bounds for the desired quantities for all nodes. These rough bounds indicate for which vectors u and w more accurate bounds should be computed with the aid of Gauss-type quadrature rules. This hybrid approach is cheaper than only using Gauss-type rules to determine accurate upper and lower bounds in the common situation when it is not known a priori for which vectors u and w accurate bounds for uT f(A)w should be computed. Several computed examples, including an application to software engineering, illustrate the performance of the hybrid method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computation of Gauss-Kronrod quadrature rules

Recently Laurie presented a new algorithm for the computation of (2n+1)-point Gauss-Kronrod quadrature rules with real nodes and positive weights. This algorithm first determines a symmetric tridiagonal matrix of order 2n+ 1 from certain mixed moments, and then computes a partial spectral factorization. We describe a new algorithm that does not require the entries of the tridiagonal matrix to b...

متن کامل

Network Analysis via Partial Spectral Factorization and Gauss

Large-scale networks arise in many applications. It is often of interest to be able to identify the most important nodes of a network or to ascertain the ease of traveling between nodes. These and related quantities can be determined by evaluating expressions of the form u T f (A)w, where A is the adjacency matrix that represents the graph of the network, f is a nonlinear function, such as the ...

متن کامل

A Nodal Sparse Grid Spectral Element Method for Multi-Dimensional Elliptic Partial Differential Equations

We develop a sparse grid spectral element method using nodal bases on Chebyshev-Gauss-Lobatto points for multi-dimensional elliptic equations. Since the quadratures based on sparse grid points do not have the accuracy of a usual Gauss quadrature, we construct the mass and stiffness matrices using a pseudo-spectral approach, which is exact for problems with constant coefficients and uniformly st...

متن کامل

Analysis of directed networks via partial singular value decomposition and Gauss quadrature

Large-scale networks arise in many applications. It is often of interest to be able to identify the most important nodes of a network or to determine the ease of traveling between them. We are interested in carrying out these tasks for directed networks. These networks have a nonsymmetric adjacency matrix A. Benzi et al. [6] recently proposed that these tasks can be accomplished by studying cer...

متن کامل

Applications of Gauss-Radau and Gauss-Lobatto Numerical Integrations Over a Four Node Quadrilateral Finite Element

In this paper Gauss-Radau and Gauss-Lobatto quadrature rules are presented to evaluate the rational integrals of the element matrix for a general quadrilateral. These integrals arise in finite element formulation for second order Partial Differential Equation via Galerkin weighted residual method in closed form. Convergence to the analytical solutions and efficiency are depicted by numerical ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2013